INDIAN SCHOOL AL WADI AL KABIR

Assessment - 1

Sub: MATHEMATICS (041) Class: XII Max Marks: 80 Date: 22.09.2024 Set - II Time: 3 hr

General Instructions:

- 1. This question paper is divided in to 5 sections- A, B, C, D and E
- 2. Section A comprises of 20 MCQ type questions of 1 mark each.
- 3. Section B comprises of 5 Very Short Answer Type Questions of 2 marks each.
- 4. Section C comprises of 6 Short Answer Type Questions of 3 marks each.
- 5. Section D comprises of 4 Long Answer Type Questions of 5 marks each.
- 6. Section E comprises of 3 source based / case based / passage-based questions (4 marks each) with sub parts.
- 7. Internal choice has been provided for certain questions
- 8. This question paper contains 5 pages

SECTION - A

(Each MCQ Carries 1 Mark)

1 If
$$f'(x) = x + \frac{1}{x}$$
, then $f(x)$ is

$$a) x^2 + \log |x| + c$$

a)
$$x^2 + \log |x| + c$$
 b) $\frac{x^2}{2} + \log |x| + c$ c) $\frac{x}{2} + \log |x| + c$ d) $\frac{x}{2} - \log |x| + c$

c)
$$\frac{x}{2} + \log|x| + c$$

d)
$$\frac{x}{2}$$
 - log $|x|$ + c

The value of 'k' for which the function
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$
 is continuous at $x = 0$ is

a) 0

b) -1

d) 2

The interval of x in which $y = [x (x - 2)]^2$ is an increasing function is 3

- a) $(-\infty, 0)$
- b) (0, 2)
- c) $(2, \infty)$
- $d) (0, \infty)$

4 If
$$x = t^2$$
 and $y = t^3$ then $\frac{d^2y}{dx^2}$ is equal to

b) $\frac{3}{4t}$

c) $\frac{3}{2t}$

d) $\frac{3}{4}$

5 The value of
$$\sin^{-1} \left[\sin \left(\frac{13\pi}{7} \right) \right]$$
 is

- b) $\frac{13\pi}{7}$
- c) $\frac{\pi}{7}$

d) - $\frac{\pi}{7}$

If
$$y = Ae^{5x} + Be^{-5x}$$
, then $\frac{d^2y}{dx^2}$ is equal to

a) 5y

- b) 15_v
- c) 25y

d) 35y

7	The function $f(x) = \frac{4 - x^2}{4x - x^3}$				
	a) discontinuous at ex	actly one point	c) discontinuous at exactly two points		
	b) discontinuous at exactly three points		d) discontinuous at exactly four points		
8	If $[x-2 5+y]\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	= 0 , then $x + y$ is			
	a) 0	b) -1	c) -2	d) -3	
9	Let $\sin^{-1}(2x) + \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$. Then the value of 'x' is				
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{8}$	d) 8	
10	If A is a square matrix of order 2 and $ A = -3$, then the value of $ 5A $ is				
	a) -3	b) -15	c) - 27	d) -75	
11	Two positive numbers whose sum is 16 and the sum of whose cubes is minimum are				
	a) 8 & 8	b) 6 & 10	c) 4 & 12	d) 2 & 14	
12	If A and B are square matrices of order 2, then $det(A + B) = 0$ is possible only when				
	a) $\det(A) = 0$ or $\det(B) = 0$		c) $\det (A) = 0$ and $\det (B) = 0$		
	b) $\det(A) + \det(B) = 0$		d) A + B = 0		
13	$\int \frac{1}{\sin^2 x \cdot \cos^2 x} \mathrm{d}x \text{ is ec}$	qual to			
	a) $\tan x + \cot x + C$	b) $-\tan x + \cot + C$	c) $\tan x - \cot x + C$	d) $-\tan x - \cot + C$	
14	The radius of the circle is increasing at the rate of 0.7 cm/sec. What is the rate of increasing its circumference?				
	a) 0.7 cm/sec	b) π cm/sec	c) 1.4π cm/sec	d) 2π cm/sec	
15	The number of all possible matrices of order 3×3 with each entry 0 or 1 is				
	a) 18	b) 27	c) 81	d) 512	
16	$\int e^x$. sec x (1+tan x) dx equals				
	a) $e^x \cos x + C$	b) $e^x \sec x + C$	c) $e^x \sin x + C$	d) $e^x \tan x + C$	
17	The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (tan^5x + 1) dx$				
	a) π	b) 0	c) 1	d) 2	
18	If A, B are non-singul	non-singular square matrices of the same order, then $(AB^{-1})^{-1} =$			
	a) BA ⁻¹	b) A ⁻¹ B ⁻¹	c) A ⁻¹ B	d) AB	

Directions: In the following 2 questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- 19 **Assertion (A):** If x is real, then the minimum value of $x^2 8x + 17$ is 1.

Reason (R): If f''(x) > 0 at a critical point, then the value of the function at the critical point will be the minimum value of the function.

a)

b)

c)

d)

20 Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = x^3$

Assertion (A): f(x) is a one-one function.

Reason (R): f(x) is a one-one function if co-domain = range.

a)

b)

c)

d)

SECTION - B

(Each Question Carries 2 Marks)

- 21 Find the real value of x for which the value of $\begin{vmatrix} 1 & -2 & 5 \\ 2 & x & -1 \\ 0 & 4 & 2x \end{vmatrix}$ is 86
- 22 (a) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\tan x}} dx$
 - OR -
 - (b) Evaluate $\int_{1}^{3} \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{4 x}} dx$
- 23 (a) Sketch the graph of $\sin^{-1} x$
 - OR -
 - (b) Simplify $\sin^2\left(\cos^{-1}\left(\frac{1}{4}\right)\right) + \cos^2\left(\sin^{-1}\left(\frac{1}{3}\right)\right)$
- Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \cos x \quad \forall x \in \mathbb{R}$, show that f is neither one-one nor onto.
- 25 Find the value of 'a' and 'b' such that the function defined is a continuous function

$$f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax + b, & \text{if } 2 < x < 10\\ 21, & \text{if } x \ge 10 \end{cases}$$

SECTION - C

(Each Question Carries 3 Marks)

26 Find
$$\frac{dy}{dx}$$
 if $x = a \left(\cos \theta + \log \tan \frac{\theta}{2}\right)$ and $y = a \sin \theta$

- 27 (a) Integrate the function $\tan^{-1}x$
 - OR -
 - (b) Evaluate $\int_1^3 |x^3 2x| dx$
- The volume of a cube is increasing at a rate of 9 cubic centimetres per second. How fast is the surface area increasing when the length of an edge is 10 centimetres?
 - OR -

A particle moves along the curve $y = \frac{2}{3}x^3 + 1$. Find the coordinates of the points on the curve at which the y-coordinate is changing twice as fast as the x coordinate.

- 29 (a) Let $f: \mathbb{N} \to \mathbb{R}$ be a function defined as $f(x) = 4x^2 + 12x + 15$, where \mathbb{R} is the range of f. Show that the function f(x) is one-one.
 - OR -
 - (b) Show that the function f: $R \to \{x \in R : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1 + |x|}$, $x \in R$ is a one-one onto function
- 30 Express the matrix $A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$ as the sum of a symmetric and skew symmetric matrix.
- 31 If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that $x^2 y_2 + xy_1 + y = 0$

SECTION - D

(Each Question Carries 5 Marks)

- 32 (a) Show that the relation R defined on the set $N \times N$ by (a, b) R (c, d) iff ad (b + c) = bc (a + d) is an equivalence relation.
 - OR
 - (b) Show that the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $R = \{(a, b) : |a b| \text{ is a multiple of } 4\}$ is an equivalence relation. Also find the equivalence class containing 1
- 33 Using matrix method, solve the system of equations

$$x + 2y - 3z = -4;$$

 $2x + 3y + 2z = 14;$

$$3x - 3y - 4z = -15$$

- Find $\frac{dy}{dx}$ if $x^y + y^x + x^x = a^b$ 34
- (a) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$ 35

 - (b) Evaluate $\int \frac{3x+5}{x^3-x^2-x+1} dx$

SECTION - E

(CASE STUDY - Each Question Carries 4 Marks)

36 An open tank is to be constructed using metal sheet with a square base and vertical sides so that it contains 500 cubic meters of water.

Using above information answer the following:

(i) Find the minimum surface area of the tank (2m)

- (ii) Find the percentage increase in volume of the tank, if size of square base of tank become twice and height remains same. (2m)
- Let $P(x) = -5x^2 + 125x + 37500$ is the total profit 37 function of a bike manufacture company, where xis the production of the company. Based on the above information, answer the following questions.

- (i) What will be production of the company when the profit is ₹38250?
- (ii) When the production is 2 unit, what will be profit of the company?
- (1m)

(iii) (a) Find the maximum profit of the company.

(2m)

(1m)

- OR
- (b) Find the intervals in which the profit is strictly increasing and decreasing.
- A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu 38 purchased 1 pen of each variety for a total of ₹21. Jeevan purchased 4 pens of 'A' variety, 3 pens of 'B' variety and 2 pens of 'C' variety for ₹60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for ₹70.

- Convert the given above situation into a matrix equation of the form AX = B (1m) (i)
- (ii) Find |A| (1m)
- (a) Find A⁻¹ and cost of the pen 'C' variety (iii) (2m)
 - OR
 - (b) Find cost of each variety of pen (2m)
